

Aalborg Universitet

Om saltholdigheden i Hjarbæk Fjord ved åben sluse i Virksunddæmningen
Larsen, Torben
Publication date:
1982
Document Version Også kaldet Forlagets PDF
Link to publication from Aalborg University

Citation for published version (APA):

Larsen, T. (1982). *Om saltholdigheden i Hjarbæk Fjord ved åben sluse i Virksunddæmningen*. Aalborg Universitetscenter, Inst. for Vand, Jord og Miljøteknik, Laboratoriet for Hydraulik og Havnebygning.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Torben Larsen OM SALTHOLDIGHEDEN I HJARBÆK FJORD VED ÅBEN SLUSE I VIRKSUNDDÆMNINGEN **APRIL 1982**

AALBORG UNIVERSITETSCENTER
LABORATORIET FOR HYDRAULIK OG HAVNEBYGNING
SOHNGARDSHOLMSVEJ 57 DK-9000 AALBORG DANMARK

Indholdsfortegnelse

1.	Indledning	side	1
2.	Konklusion	side	2
3.	Kort historisk baggrund	side	3
4.	Numerisk model af vandskiftet ved åben sluse	side	4
5.	Vandstandsvariationerne ved Virksunddæmningen som input til vandskiftemodellen	side	6
6.	Diskussion	side	10
7.	Litteratur	side	11

Bilag .

Oversigtsplan	Bilag nr. l	
90		
Beregningsresultater 1974-75	Bilag nr. 2	

1. Indledning

Siden sommeren 1980 har spørgsmålet om de tiltagende miljømæssige problemer i og omkring Hjarbæk fjord været debatteret i offentligheden. Det er imidlertid ikke hensigten med herværende skrift at give en sammenfattende belysning af problemstillingen, men kun at belyse de muligheder der foreligger for at bringe Hjarbæk fjord tilbage til en saltholdighed som eksisterede før bygningen af Virksunddumningen.

Dette arbejde er påbegyndt på foranledning af "Arbejdsgruppen vedrørende Hjarbæk fjord og Louns bredning", som består af en række personer med tilknytning til området, som ønsker en ændring og en forbedring af tilstanden i området. Mere konkret har formålet været at revurdere nogle pessimistiske skøn for mulighederne for at forbedre vandskiftet og saltholdigheden, som myndighederne i en tidlig fase fremlagde i sagen, litt. /6/. Det skal imidlertid understreges, at denne rapport fremstår som forfatterens personlige synspunkt af problemet.

Vandstandsobservationer fra Virksunddæmningen og fra Skive havn er velvilligt stillet til rådighed af Viborg Amtskommunes tekniske forvaltning.

Inden det herværende arbejde var afsluttet, iværksatte Viborg Amtskommune og Miljøstyrelsen en omfattende analyse af forholdene i Hjarbæk fjord og Louns bredning. Disse analyser vil formentlig gå dybere i detaljer end det har været muligt her, men man vil næppe komme frem til principielt afvigende resultater.

2. Konklusion

- Middelvandstanden i Louns bredning, målt ved Virksunddæmningen, var i 1974-75 +0,20 m over Dansk Normal Nul. Et kontrolnivellement har imidlertid siden vist, at vandstandsbrædtet har siddet 0,10 m for lavt.
- 2. Såfremt man i 1974-75 havde holdt alle sluser i Virksunddaæmningen åbne, undtagen når vandstanden i Louns bredning oversteg +0,40 m (D.N.N.), ville man have haft en middelsaltholdighed i Hjarbæk fjord på 14% og en minimumssaltholdighed på 7%. Denne minimumssaltholdighed ville være forekommet i februar måned 1975.
- 3. Såfremt man yderligere i dæmningen havde etableret en sluse med 8 m's bredde og 6 m's dybde og iøvrigt overholdt forudsætningerne som under pkt. 2, ville de nævnte saltholdigheder have været ca. 2% større.

3. Kort historisk baggrund

I 1941 udarbejdede Viborg Amtsråd et forslag til en broforbindelse over Virksund. Formålet med dette projekt var at forbedre vejforbindelsen mellem Skive og Hobro. Imidlertid overvejede man fra landbrugsside mulighederne for at regulere vandstanden i Hjarbæk fjord, for at sikre de store engarealer omkring Skals å og Simested å mod oversvømmelse.

Efter indstilling fra Statens Landvindingsudvalg udarbejdede Viborg Amtsråd i 1955-56 et skitseforslag til et dæmningsanlæg med afvandings- og
skibsfartssluse. Efter en vis modstand fra fiskeriministeriets side blev
der i 1959 udarbejdet et detajlprojekt for dæmningsanlægget. I 1963 gav
regeringen igangsætningstilladelse til projektet, og den nuværende dæmning med afvandingssluse og skibsfartssluse stod færdig i 1966, litt. /5/.

Som nævnt var baggrunden for projektet både at skabe en vejforbindelse og en oversvømmelsessikring. Man skal her gøre sig klart, at Hjarbæk fjord, før dæmningen blev bygget, har haft de største ekstreme vandstande som er registreret i Limfjorden. Der angives således at være målt et højvande på +2,3 m og et lavvande på -1,6 m ved Hjarbæk havn. Tilsvarende ekstreme højvande opstod under novemberstormen i 1981.

4

4. Numerisk model af vandskiftet ved åben sluse

Beregningen af vandskifte og saltholdighed har taget udgangspunkt i kontinuitetsligningerne for henholdsvis volumen og salt:

$$F\frac{dh}{dt} = Q_F + Q_S \tag{1}$$

$$\frac{d(VS)}{dt} = \begin{cases} Q_S & S & \text{hvis } Q_F < 0 & \text{dvs. udstrømning fra fjorden} \\ Q_S & S_L & \text{hvis } Q_F \ge 0 & \text{dvs. indstrømning til fjorden} \end{cases}$$
 (2)

F er Hjarbæk fjords overfladeareal (= $25 \text{ km}^2 \text{ ved } h = 0$)

h er vandstanden i Hjarbæk fjord

t er tiden

Q_r er ferskvandstilstrømningen

Qc er vandføringen i slusen

V er fjordens aktuelle vandvolumen

S er saliniteten i Hjarbæk fjord

S_T er saliniteten i Louns bredning (22% i 1974-75)

Ferskvandstilførslen $Q_{\rm F}$ for årene 1974-75 kan fastsættes til, litt./7/

$$Q_F = 7.5 + 2.5 \cos \left(\frac{2\pi}{T} \text{ t}\right) \text{ m}^3/\text{sec}$$

hvor T = 1 år og ter 0 d. 1. januar 1974.

Vandføringen gennem slusen kan med udgangspunkt i erfaringer med modelforsøg med Thorsmindeslusen, litt. /3/, fastsættes til

$$Q_S = C (A_O + \frac{h + h_L}{2} B) \sqrt{2g (h_L - h)}$$

hvor C er en slusekonstant fastsat til 0,9, litt. /1/ og litt. /3/

A er slusetværsnittet af samtlige åbne sluser ved D.N.N.

 $h_{T.}$ er vandstanden på Louns bredning

B er den samlede bredde af sluserne

g er tyngdens acceleration

Virksunddæmningen

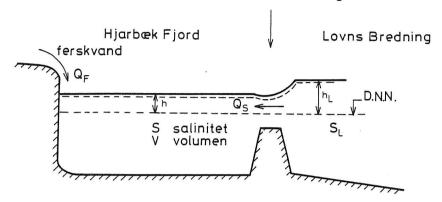


fig. 4-1 Principskitse af vandskiftemodel

Ligning (1) blev omskrevet til en simpel differensligning

$$F_{i} \frac{h_{i+1} - h_{i}}{\Delta t} = Q_{F_{i}} - Q_{S_{i}}$$

Man valgte et tidskridt Δt på 12 min og testede, at den numeriske integration ikke gav anledning til mærkbare numeriske fejl.

5. Vandstandsvariationerne ved Virksunddæmningen som input til vandskiftemodellen

På nedenstående figur 5-1 er angivet et kort udsnit af vandstandsvariationerne, som de har været foretaget siden dæmningens færdiggørelse. Man bemærker, at der foretages tre daglige målinger morgen, middag og aften. I det følgende har man forudsat, at målinger er foretaget kl. 06, 12 og 18.

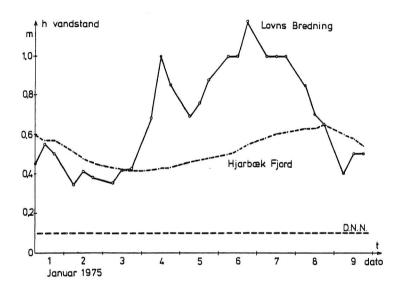


fig. 5-1 Udsnit af vandstandsobservationer

Med udgangspunkt i 2 daglige observationer i 1974 og 1975 kunne følgende størrelser beregnes:

Gennemsnitlig vandstand \bar{h} = +0,198 m Standardafvigelsen på vandstanden s(h) = 0,30 m.

På fig. 5-2 er vist autokorrelationsfunktionen $R(\tau)$

$$R(\tau) = \frac{(h(t) - \bar{h})(h(t + \tau) - \bar{h})}{s(h)^2}$$
(3)

for vandstandsvariationerne i Louns bredning. På fig. 5-3 er en hyppighedsstatistik for samme observationer angivet.

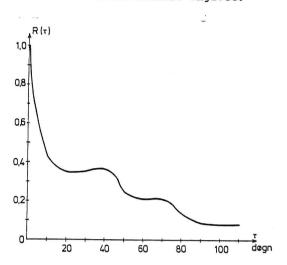


fig. 5-2 Autokorrelationsfunktion for vandstand i
 Louns bredning 1974-75

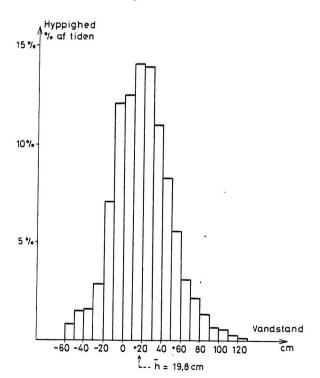
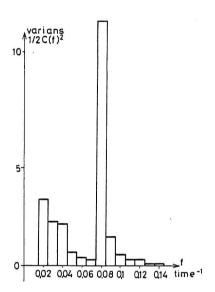



fig. 5-3 Hyppighed af vandstand i Louns bredning 1974-75

Når man betragter strøm- og blandingsprocesser i fjorde og kystnære områder er det velkendt, at tidevandet kan være den vigtigste energikilde
til disse processer. Dette gælder primært perioder med lav vindhastighed og stabil barometerstand. Da disse perioder ofte er kritiske i miljømæssig henseende, har man derfor lagt vægt på netop at kunne vurdere
saltholdigheden i fjorden under sådanne vejrforhold. Såfremt man beregner vandskiftet gennem slusen udelukkende på grundlag af de tre daglige
observationer af vandstanden, vil man underestimere saltholdigheden. På
fig. 5-4 er vist resultatet af en fourieranalyse af 14 døgns kontinuerte
vandstandsobservationer fra Skive havn.

I Limfjordsundersøgelsen, litt. /4/, har man foretaget en harmonisk analyse af vandstanden i Thyborøn og Hals. Man kan heraf konkludere, at variansen i tidevandspejlsbevægelserne i Limfjorden i altovervejende grad er knyttet til $\rm M_2$ -komponent med perioden 12,43 timer. Man antager derfor, at dette også er gældende for Louns bredning og for simpelheds skyld antages det, at den målte spids på variansspektret i Skive havn ligger eksakt på perioden 12,43 timer. Den tilhørende amplitude er 5,0 cm.

For den teoretiske situation, at vandspejlsvariationerne kun skyldes et tidevand med en amplitude på 5 cm og en periode på 12,43 timer, har man i nedenstående tabel vist forskellen i vandspejlsvariationernes varians og i middelsaltholdigheden, når man i beregninger tager udgangspunkt i henholdsvis et kontinuert tidevand og en lineær interpolation mellem tre daglige observationer kl. 06, 12 og 18 i samme tidevandsvariation.

	Varians af vandspejlskoten	Saltholdighed i Hjarbæk fjord
	cm²	%
Kontinuert tidevand Amplitude 5 cm	12,5	12,1
Lineær variation af vandspejl mellem værdier kl. 06, 12 og 18	3 6,4	8,8

For at kompensere for det manglende tidevand tilføjes de observerede vandstande et sinusformet tidevand af ovennævnte størrelse. Imidlertid må den restvarians, som findes på perioden 12,43 timer, først fjernes. Dette gøres med et glidende gennemsnitsfilter af følgende type

$$h_1(i) = \frac{1}{61} \sum_{p=-30}^{p=30} h(i + p)$$

 $h_1(i)$ er den udglattede vandstand

h(i) er den interpolerede vandstand

i er tidsskridtets nummer, tidsskridtet $\Delta t = 12 \text{ min.}$

Dette filter er særdeles simpelt at arbejde med i den digitale model, idet man for hvert tidskridt kun skal addere h(i + 30) og subtrahere h(i - 30) fra en "løbende" sum af de 61 værdier. Forstærkningsfaktoren for dette filter beskrives af, litt. /2/:

$$|H(f)|^2 = \frac{1}{m} \left[1 + 2 \sum_{k=1}^{m-1} (1 - \frac{k}{m}) \cos(2\pi f k) \right]$$

For m = 61 er denne funktion angivet på fig. 5-5.

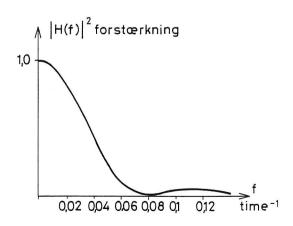


fig. 5-5 Forstærkning af digitalt filter

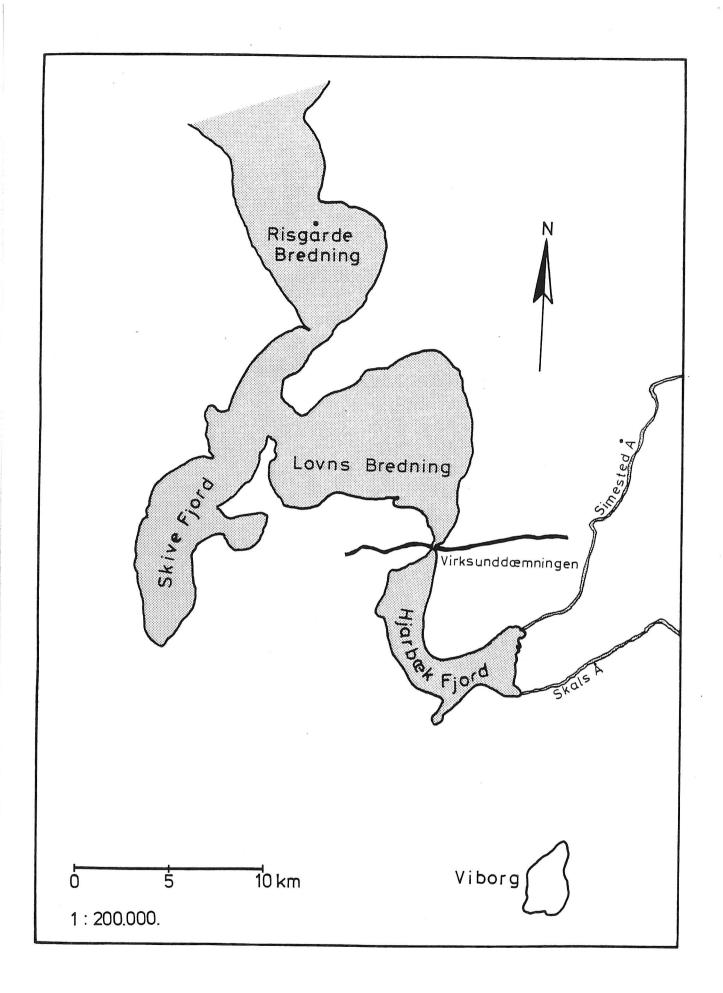
Man bemærker, at dette filter også fjerner en vis varians i området med perioder på l døgn.

6. Diskussion

Fuld opblanding i Hjarbæk fjord

Den anvendte model for vandskiftet forudsætter fuld opblanding i Hjarbæk fjord. Dette er naturligvis en tilnærmelse. Begrundelsen for at denne antagelse blev opretholdt var erfaringerne med måling af vandskifte og saltholdighed i Halkær bredning sydvest for Nibe. Man har her i en årrække, siden 1972, udført projekter vedrørende hydrografi og vandkvalitet. Halkær bredning har en del lighedspunkter med Hjarbæk fjord. Bl.a. er vanddybden af samme størrelsesorden og forholdet mellem ferskvandstilførsel og tidevandsprismet er nogenlunde ens. I Halkær bredning ligger saltholdigheden i størrelsesordenen 15% og man har stort set aldrig salinitetsdifferenser over 2% mellem den nordlige og den sydlige del. Dog kan saltholdigheden i et arealmæssigt uvæsentligt område ved Halkær å's udløb til tider blive lavere. Den gode blanding af Halkær bredning må i høj grad tilskrives horizontal vindinduceret cirkulation.

Man skønner, at den horizontale inhomogenitet i Hjarbæk fjord ved åbne sluser bliver mindre end de daglige tidsmæssige fluktuationer i hvert enkelt punkt i overensstemmelse med erfaringerne fra Halkær bredning.


Lagdelingen af Hjarbæk fjord og Louns bredning

Den vertikale stabilitet af vandmasserne i et fjordsystem er kritiske for de miljømæssige forhold på grund af den forøgede sedimentation og den formindskede lodrette turbulente diffusion. Den vertikale blanding i Hjarbæk fjord styres normalt af vinden. Såfremt sluserne holdes åbne må det antages, at den vertikale stabilitet i fjorden vil have samme karakter som f.eks. på Thisted bredning, Louns bredning og Halkær bredning. Fra disse områder er det velkendt, at lagdelingen af vandmassen optræder når vindhastigheden er lavere end 2-4 m/sec. Under sådanne situationer er tidevandet den væsentligste energikilde til blandingsprocessen.

En overslagsberegning viser, at den nødvendige energi, for at indblande ferskvandstilførslen til Hjarbæk fjord ved åbne sluser, er ca. $3 \cdot 10^7$ joule pr. tidevandsperiode. Såfremt man bygger en ny gennemstrømningssluse med en bredde på 8 m og en dybde på 6 m, vil den producerede turbulente energi heri være ca. $30 \cdot 10^7$ joule pr. tidevandsperiode. Der er således begrundet formodning om at en sådan sluse vil reducere lagdelingen både i Hjarbæk fjord og Louns bredning. En nærmere analyse af denne problemstilling vil kunne fastsætte en sådan sluses størrelse mere nøjagtigt.

7. Litteratur

- /1/ Chow, Ven Te (1959): "Open-Channel Hydraulics", McGraw-Hill, New York.
- /3/ Larsen, Torben (1976): "Modelforsøg med ændring af Thorsminde slusen", Laboratoriet for hydraulik og havnebygning, Rapport til Cowiconsult og Ringkøbing amts vejvæsen.
- /4/ Limfjordskomitteen (1976): "Limfjordsundersøgelsen 1973-75", Delrapport 4: Vandskifteundersøgelser.
- /5/ Ostenfeldt, Chr. og Jessen, J.J. (1967): "Virksunddæmningen", Ingeniøren, forskning nr. 6, juni 1967.
- /6/ Viborg Amtskommune (1981): "Notat vedrørende fremtidig vandkvalitet i Hjarbæk fjord", upubliceret, men udsendt til interesseorganisationerne.
- /7/ Vandkvalitetsinstituttet (1979): "Vandkvalitetsberegninger, Hjarbæk fjord", rapport til Viborg amtskommune.

								,	•1		1.1.1974	1	vandstand på	Lovns bred-	ning				vandstand på	Hjarbæk fjord				Salinitet i	Hjarbæk fjord		Ð		SE Eksisterende	sluser åbne		Blossondo		user pr	r ny sluse abne							Beregningsresultater	-75		Bilag nr. 1		side 1		
											Dag nr.		HLOVNS						ННЭ					SHJ					EKS SLUSE			a of the										регед	1974-75						
SLUSE	## ## ##	2.5	/ / /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	17.6	17.5	17.6	17.7	17.7	17.6	17.7	7 1	0.71	17.8	17.9	17.7	. 6	. B . C1			 	- 4 - 4			- - - - -			0.00		18.4	э <u>т</u>	1 d.		2 E	1.8	18.2	17.9	13.0	18.0	0 0 7	_	7	89 T	 :: :		± ⊕ .01 .	2 2	 	1.0.3
NY SL HHJ		-26.6	 	- 0	- 17.3	-37.1		1.01 1.00 1.00		-31.0				-25.7		2. 66.			7.6		د ن	7 7 7	17.3		33.2		י טיבוי	ָרְעַינּ נְיֻ		29.1	- c	30.8	23.6	11.0		- 5	20.3		4.01		1 9		J. C.	יי ויי ניי	. b.	1.7	+ ±	 	3.31
SLUSE		<u>।</u> इ.	ין יי יי	ים מו	10 E	5	15.2	12 m 12 m 4 m	. 4.	15.3	15 4.	<u>ה</u> ה ה	13 P.	15.6	15.6	1. 1. 1. 1. 1.	. n.	16.2	15.2	16.2	6) v	- 4	1 6 6	16.5	16.7	16.5	1 T	1 61	16.5	15.7	16.6	. 9 . 9	16.8	1 6 5 6 5 6	15.6	16.6	0 40 0 40	16.2	16.3	16.3	1 9 7	15.7	16.5	4 9 4	4.9	3.91	16.6	. 9 . 6	16.6
EKS SLI	- 11	-28.6			- 17 -	-36.4	32.3	-122 -123 -133 -133 -133 -133 -133 -133	-23.4	-28.8	-25.8	-38.3	8.00.1	-24.5	-25.5	-29.6		(J	6.3	7.1		- C			28.3		4.0	· C	12.0	27.1	<u></u> . 6 6 61 ±	29.1	26.5	0.00 0.00	-		7 B. 4		-13.0			. 51 1 2 . 51			4	7 6	2 13 13 14 4	 1, - 1, 1	ר. בי
HLUUNG		-27.5	-12 -12 -13 -13	-13.1 3.1	-26.3	-35.6	-25.3	-18.0	-26.6	-31.5	-31.0	-48.2	0.141	-30.1	-27.8	-30.8	. 4				- c	יז ני בין	2.62	10 4	54.5	34.7	თ :	. c	21.0	(1) (1)	2. a 	36.7	23.5	0 -	9.7	ю :	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-21.9	- 14.5	다 c	100	15.0	3.3	ن خ من د	; 4 ; –		C. C.	7.0	12 8
DAG NR	11 11				125 405			127		130	131	132	1.00 1.00 1.00 1.00	135	136	137	96.1	140	7.	142	143	ժ հ ժ հ	146	147	148	149	150	- 52	153	· 1 1 1 1	 	157	158	159	161	162	163 263		991 .	167	691	170	171		7.4	175	17.6	17.8	179
SE	H H	15.6			ក ភូមិ ភូមិ			15.7	ים נחנ		14		16.8 a	17.4				16.8			16.1			16.8		16.9	16.8		1.7	17.1	17:1	17.1	17.1	17.1	17.1	17.0	 		17.2	17.3	+ +		17.5	- 7 - 5 - 4	17.3	4.71	17.3	17.5	17.3
NY CLUSE HHJ SH	H H H H H H	-44.3		- 35 - 1	1 1 10 10 10 10 10 10			-61.9		-58.4	-52.3	-24.5		21.6	31.4	39.0	- 4	-12.7	-37.3	-57.8	-65.B	1.00	7 44 -		-25.5	-30.7		0 0	-18.3	-20.0	-23		-22 5	-20.6	-27.8	-33.0	13 C 13 C 13 C	-25-4	-25 2	7 :23 -	0 C	-20.9	-11.5	11.6	2.9.5	-26.6	35. 35. 3. 6	46.0	- 41
SLUSE	11		T.	4.6	 	4	13.3	13.0	7 2 2	12.6	13.2			15.3								14.0			4 9	14.7	4.5	· · ·	14.9	14.9	4 4	0 00	4-18	14.9	. 4 . B	14.7	# 4								. S. 1 0			· · · ·	9 +
EKS SL HHJ	d	49	38	-	5 7	4	÷7	-59.9	0 0	67	53	27	4 1.	16	30.7	38.3	ก ก ก	4.11	-32.7	-52.5	-64.0	-60.3	7.00	-30.0	-25.7	-29.1	7.4.7	0.00	1 =	50	u1 0	1 67	-22.2	7	- 61	5	11 6	i Ju	CJ	200	1 -	-21.6	-		- 01	-25.3	32.5	+ + - 10 - 10 - 10	-40.9
HLUVNS	11 11 11 11 11 11 11 11 11 11 11 11 11	-45.0	-26.9	6.14-	-57.1	-99 9	-47.8	9.05.	-68.7	-67.7	-50.5	-23.6	-18.8	21.1	30 . 0	4.0	. e	-13.2	-37.3	-57.7	-63.6	10 / C / C	40.00	-33.7	-30.2	-35.4	-39.5	0 m	-19.4	-18.7	- 52 - 1 - 10 - 10 - 10 - 10	-21.3	-20.4	-17.7	-30.7	-35.8	- 26°-	-29.0	-28 0	4.25.4		-18.6	क । ।	6- 51 6- 51	-29.1	-27.1	8. 8. 8. 8. 7. 7.	-48.9	-43.8
DAG NR	17 13 14 15 14	9	6.1	62	63	59	99	67	80	70	7.1	72	6/ /2	75	76	77	0 0 7	80	8.1	82	83	4 i	20 00	6.0	88	68	06	- C.	9.9	94	95 95	2 %	9.8	40.0	101	102	103	105	106	107	. 601	110	111	112	114	- I	116	118	119
SLUSE J SHJ		12	+ i		4 4 1. 4		-	14.9 		4.0	4.5.4	15.9	1 0 T	5	15.2	14.9	. 4 . A		14.7	ا ت) 4 0 4	. 10	5.1							 		÷.5	 	15.8		+ m		בו בי	 	ריי רט:	5	16.0	- x	1.5	9 :	ור ה יע מ	בה ל ה ה	(K)
NY SLI		0	2	D C	125	-16.8	CI	00	-14.7	8.7	4.1	1	7. 6.4	1 0	46.0	4.8 8.00	34.	18.5	7.5	29.4	32.6	+ r	10.0	6.5	22.3	10.3	— т со т со с	. E	26.2	18.7	6 6 6 6 6 6	26.8	17.1	39.7	± ± €	42.9	0 · 0·	2.1			-17.4	0	4.61	9:5	2.0.7	-24.5	4 10 1 4 4 10 14	50.5	
SLUSE	"	11.9	7.1.				_		1 (1	C)				. 																			4.61				- 6. - 2.								 			85	
EKS SLI HHJ	11	-	9.0	, r	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-17.6	-22.2	-12.0	-14.8	B. 4.	e e	27.9	0 4 0 4	44.6	46.5	4.4 6.7 6.0		19.0	7	27.0.	E 6	7 . 7	 	8	23.1		20 C	20.0	26 3	18.3	2 C 2 C 3 C 4 C	27.9	17.1	3.60 3.60 5.00	47.8 8	43.9) ២ - - - - - -	ы. Э	7	ນ - ເຄີ	2 -	ci G	4.51	6 0 01 -	-16.9	ان م م	+ 1.1.+	159.0	
HLUVNS		-6.2	ا ما د	D 10	- 23.0	-15.6	19.0	4- c-	6.6-	9.7	200	24.50 12.00	יו ה ה	46.5	47.2	6. 46 E. 6.	0 0 0 0 0	18.3		3.1.9	11. 13. 14. 17. 17.	0 0	. ci	J. 6.	17.1	© ! © !	\ <u>-</u>	20.5	24.9	ا ان ان	0.65	27.0	20.8	2. 4 C. C.) #: -	. 0	(1) (1)	2 B C -	-12.3	6.6	~; · 	5 4 2 4	-20.6	6 927	, 56. 7. 4.4.	+ 69 +	
DAG NR		- !	יו ני	7 <	רט ±	9	. 7	33 6	10	-	<u>(1</u>	<u>.</u>	± шт	16	17		- 0.	. £1	61 61	C.	4 U) () () ()	27	28	68	30	 	1 C	÷.	in i	ς Ν ς Ν	38	6E	5 t 4	4:2	ο ∢ ∀ *	+ 4 + 13	4.6	47	48 94	้าเว	<u>5</u>	ញ : ល :	1, 1, 1, 4	55. L∵	95) BS	64,	·

side 2

		п
SESHU	សស្លេលស្រុក្ខស្លេសស្រុសស្រុសស្រុសស្រុសស្រុសស្រុសស្រុសស្នុក្ខ្មុំក្នុងក្នុងក្រុសបាយបញ្ជាប់បាបប គេសេលក្រុសស្រុសស្រុសស្រុសស្រុសស្រុសស្រុសស្រុស	27.1.1.1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2
NY SLUSE HHJ SH		U 4 4 D D D D U U 4 V 1 4 D D D D U U 4 V 1 4 D D P D U V U L 4 D D V 4 4 4 U A
LUSE	овиниоввувной вудной ввес в заправной запрада в запрада с с с при при при	00 00 00 00 00 00 00 00 00 00 00 00 00
EKS SLU		36 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
HLOVNS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	527.2 228.1 728.9 81.1 64.1.4 50.5 50.5 55.3
DAG NR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0-000000000000000000000000000000000000
SLUSE JEUSE		តែក្នុកពួកក្នុក
HIY SL	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 - 25 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
SLUCE	က်လုန်နေတဲ့ ကို လိုလ်လုံကို လုံနေနန်နန်နန်နန်နန်နန်နန်နန်နန်နှင့် မြန်မာတိုင်း မြန်မာတို့ မြန်မာတို့ မြန်မာတိ လူလုန်နေတဲ့ လို လိုလ်လုံကို လုံနေနန်နန်နန်နန်နန်နန်နန်နှင့် မြန်မာတိုင်း မြန	00044000444 0001044000444
EKS SL HILU		20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HLOUNS	$\frac{d^2}{d^2} = \frac{1}{2} + $	6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -
DAG NR	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.000000000000000000000000000000000000
SLUSE J SHJ	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.
NY SL		
LUSE	ភ្ភក្កុក្នុក្នុក្នុក្នុក្នុក្នុក្កក្នុក្នុក	
EKS SL HHJ	4 4 8 4 5 9 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
HLOVNS		0 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Z X	000 000 000 000 000 000 000 000	00000000000000000000000000000000000000

																																																											Ber	701	121							
																									•																																											
SLUSE	11 11		17.9													ט י	17.7	17.9	0.00							17.9		. 0		יי פ	18.4	18 4	13.2	18.1	- C	2 0	2	B /-	17.9	18.0	19.1	18.2	18 3	0.00			0 0	9 0	0 0	0 5		0 0	0.0	8	8 !	18.4	18.4	18.3	18.2	18 2	18.1	18.	18	; -	- =	0 0	D :	2 . 2 .
HH SE			- 4						14.9	8 0	-13.9	-31.6		- (9 . D+:-	-31.6	-15.7	4		- († ·	-3.4	-2°.0	-8.7	-19.2	100			4	31.0	36.8	E - E	11.6			0.00	6 n 2 -	-15	T		11 5	C.		1 4	1.4.1	0		0 0			2 5	٠ ا	 B-	. 4-	-8.	13.4	10.7	50 50	4.0	5.0	5	, d	. O		o -	- : - : - :	-
E E			16.0																																			16.1	1.5.1	16.4	16.4	16. 6	1.	. v.	4			نا ٠	7 4 0 4	+ r) c	01 4 01 4	0 ,	16.4	16.4	16.8	16.8	16.7	16.5	16 6	16 5	16.4	4	. 4		0:	7 5 7	# 5
EKS SLUSE HHJ SHJ			П		× .																		- 3 . G	-0.7	-5.6	-16.3	-17 9			יי	25.8	36.1	32.0	- 2	0.1	1 4	0.4.0	-20.3	-16.3	+ + + +	+0.8	1.1.6	10.5	. V		, t	- U) U	7 0	· · · ·	7.0	÷ (- I	B	י ני ו קו	17.1	20.5	13.6	7.3	S. B.	- B. L	-7 6		. 4	0.0			o 7.
HLOUNS		L'		· r		D.		4	₹.	. 6.	Ç.	7 7		- 0	יו מומ	ם.	8.5 5.5	8.6		7		0 1	. /	כע	0	רט	0		+ 0	נו ה	+ 0 +	46.3	DB 51	10.6	10.	1 5	9 .		-9.2	4.4	-0.4	5 2	6.	. 4-		10	0 4	+ =) - - - +	- 4	+ 1		0 ان	21.4	17.9	7.3	2.8	- -	10.7	£. E.	i G	7 4		- , - !	<u> </u>	מב
Z.							•					489 -3									100																																מים ו	523	527	528	529	530	531	532					5.3.7	750	- E	233
. UAG	11																																																																			
SLUSE	11 11 11		ь.																															17.3																					17.8							17 4	17		0 /		7	\ . \ .
			-34 4																																									7 4-		. 20.		- 1			, ,					7	9.5-						+ UC-	- L-) () (4 C	: :
ISE			10																												÷.	14.0	14.6	- LO	<u>.</u>	ה ה ה	ים מו		5	ا ال	15.1	5.3	р. 177	! .				Α.) (C					្ស ១.១	ارة 13	15 8	15.7	4.01	رة دع	4	- L) <u>1</u>	2 L	7:	- c	בי מ
EKS SLUSE HHJ SHJ		2.5	-35.9	200-		0	6.1.1	C. 21-	0.2	7.1	12.0	10.6		10		4	, t • /	-8.0	0 70-	-4.1 7		0.04	-26.0	-17.9	-16.0	-20.7	-38 0	2 67-	7 0	2.00-	-54.0	-34.9	-14.8	6.3	C.	7 00	50.0	ם ו	υ. Ν	ព	1.6	13.0	0 6	-17	. c.	7.00	10.01		15.0	7.01	ם כו כו	קיני קיני	ŋ .	-	77.	+ 1 -	וי ני	-2.6	-13.2	-34.2	-47.9	.36.7	4	; <u>-</u>	: 16 ⁻	ם כ ז ב - ז	CJ :	Þ.
нгочиз		-18.0	-32.3	0 60-) t	0.1	٠.۲	4.1.1	항. 턴	임	9.6	т П	7 5) T	- ! - !	7.0	5.0	-12.7	-30 A	-4-1	7 00-	0.00	-40.0	-16.5	-18.5	-28.0	-48 9	8 67-		n .		-31.5	8. 6.	5.0	-0	-	- 0	יר נם	0 . /	4 . 0	ا دن	14.8	5.5	-10 3	-30.3	7 55-		- <	- c	0.0	1 . 40	 	0 i	,	9 (5)	-8.9	-3.6	- D	-22 9	-45.1	-55.8	-34.5	5 22 -	10		: U	יי נו בינו	
Œ		420	421	603	10,	500	4 1	4	426	427	428	429	430	200	- 00	4 . 2 .	433	434	435	757	76.7		95.4	439	440	441	442	677		÷ !	44.0	4:46	447	448	644	450	000	- i	70	453														900	407	468	469	470	471	472	473	474	4.75	476	477	, , t	4 / B	£ / 4.
SE	H H	1.0 4		10 0	B . D		0 1			10.4			6 6																		7.0.7			10.8	10.6		0.0	0.00	200		6.6	1.0	10.7		11.0						v.			0.0											, m		0.5	ר. ב
176	11	0	6	۲٠,	. 4	ם כ	J L	, כ	9	9	.+	7	0	c	י כ	י ר	'n	4	C1	7	. 0		- 1	n		9	_	_			ij,	+	רט	9	9	_	. 0	o .	+ 1	n	4	m	+	0	<u>.</u>	1					. 0-			ח וו		S1 -	_	4.0	۲.	B	21	٧.	5	-			c =	
																																													63	C1	-	4	· 67	α	e er		. =					9	9	4							÷ ទ មេក	
EKS SLUSE HHJ SHJ		47.8	46.5	50.9	UT.) c	. נ	יים		38.6	42.9	47.2	5	. c.		ה י	4.24	39.8	35.7	40 7	0 77		0.00	4 1 . 0	33.8	33.6	28.5	7 0	1 с 1 с	. r	0.75	41.7	45.8	8 6t	53.9	. a		· · · · · · · · · · · · · · · · · · ·	39.5	32.4	12.7	24.2	23.3	÷.3	-7.8	17.2	15.0	0.0	18 0	. 	ر در در) c	3.5		7:	71	16.5	24.3	6 9	12.7	ر در	4.6	1 7 1		- =	o :
LOVNS																																																																	T.	٠,	ο α · r.) J
6 NR H			361								÷																																																								6 - 4	

																																																Ber	101	121						
SLUSE J SHJ	11 11 11	 	Д	- V	15.7	15.7	15.7	15.7	15.6	15.7	15.7	5.8	5 . 9		 		ל ד. ש כ	- 0		0.0	14.9	15.3	15.6	15.6	16.1	16.0	16.0	16.0	י פ	# # D W	- -	. G	4.51	ا ا ا	15.7	15.6	ا ا ا	 	ים ה ים	14.7	14.4	4. 7.	13.9	13.7	13.4	е е е	7 . 7	_ c		13.8	14.1	14.0	14 0	14.1	+ + + T	
	C	1 4 0	· ·	0	14.4	14.2	15.7	17.8	ו נים נים	6.1	3.2	<u>ا</u>	27.0		- I	` L	י שני		1 2 4 5 1	-34.2	-36.9	-18.8	-2.8	÷.	30.6		19.4			# C		6.6	14.9	18.6	29.9	39.9	39.4											81			00	28	7.0-		27.7	j
LUSE	11																		•													13.0					_ c	- -					6.	11.6	+	ر در د	D 0		0	- CO	11.9	11.7	ς . Ξ :	11 6	e +	
EKS SLU HHJ S		+ L	0.0	10 -	15.9	। ह	16.0	18.3	6.8	8 9	12.51 12.51	B.	10 t 10 t 10 t	21.9			+ 0	-35 4	36.0	-32.7	-36.0	-21.2	-3.5	-3.0	26.5	ان ت		0 T	- 1	, i	. .	· - ·	15.5	19.2	29.5	39.3	40.0	יי פי פיני	40 0	43.6	46.2	48.1	4-1-1	+5.6		37.5		⊃ ני ס ⊲			23 3		9 (9 (را درا درا د	
L0	## H C	0 -	. 4	0		0	∞.	-,	4.	0.	0 :		9.0	m r	0.5	، د	د	ţ	. 4		0.	רו		89	יַטו	Ψ,			0.0	ים ני			6.	<u>ن</u>	Ú,	ָרוּ		· -	- 67	6.	IJ.	30.	+	9.5	6.65	0 ·	J .	0 c	6.9-		24.3	7 5	7 - 7	E 7	6 57 6 57	
AG NR	# # # # # # # # # # # # # # # # # # #	661	663	663	664	665	999	667	899	699	0/9	67.1	6/2	6/3									683	684	685	989	687	929	> 0 0 ·	0.40	- 0.0	693	694	695	969	697	869	700	70.1	702	703	704	705	705	707	708	707	71.0	7.12	7.13	714	715	716	/I/	719	
SE	11 11 1				16.9								17.1	17.1	0	7.07	, ,	17.7	17.0	17.2	17.0	16.7	16.6	16.5	16.6	16.5	16.4	9.4	0 1	7.01	4 4 7	16.1	15.9	15.6	15.4	15.1	15.6	, L	7 2 7	is.	15.3	15.0	14.7	14.5	14.3	÷.	71 C	V <	- L	- I	. O	14.9	6.4	æ c ≠ :		
יוני ר	# .	9 0	. ^		Ξ.	4	-	ci i	o 1	ו כו	י כו	Ţ.	- ı	י נו	+ L	ם מ	. 4	9 4		ינו י	C)	8	8	. 8	÷	6	-			t «	٠,		7	9	0	C)	28.8	÷ 0	. 4	7	۲.	8	C,		-,)	o, i	י ה		. c.					d L	는 TO 사람	
USE	11		1		15.0						•		יי מונה		0.0	# 4 + 4	ייי	יי מיני) -	ילו ניז	15.1	14.9	14.7				4.3			\ T		. 4					e c																+ : = :		3 <u>2</u> 3 0	
EKS SLUSE HHJ SHJ	11 11 11 11 11 11 11 11 11 11 11 11 11	מים כ	. 4 . G	-3.4	-7.0	-7.8	ן ניז ניז	0 10	D (- r	\ . L - *	ا ان ان	4 L) c	n .	0.4	3 C	0.00		29.4	35.8	38.2	24.5	18.1	15.5	18.4		 	L . 10	0 C) T	42.3	46.2	50.1	42.7	10.2	60 c	2 4 5	37.1	37.7	41.7	45.8	44.5	÷ :	÷ (J 0 7 7 7	1 1 1	. F	- +	0 - 1 -	-10.9	4 4	t 17.	22 /	
HLOVNS	10 4) - -	. cı	-7.9	-11.2	- 12.3	 	0 0	ا . ا . ا	ים מים	יי מינ	 	0.70	- C	O =	- v	. c.	2.5	5. 4.	27.5	48.1	35.4	17.3	17.6	19.3	1.6.	ים מני	٦ ر ن خ ن ر	7.00	1 th	7 75	60.6	61.2	72.9	27.1	6.9	28.2	+ 0 0 0	1.6.7	48.5	95.9	0.00 0.00	13.7	+ 01	יי קיי	9 3 3 C	י ולים ייונים	3.10	1.7	9.0-	+ + +-	-13.2	- 16 6	7.82. 7.82.	- 18 s	
AG NR	700	601	602	603	404	605	606	/09	9007	400	0 7		443	0 - 0																							63B																		619	
SLUSE	18 2	. 8	18.3	18.1	18.0	17.9	9 6			0 0	, o	- -	- D	1 2 2	7.87	9.0	18.0	18.0	18.0	18.0	18.3	18 2	18.1	18.0	0.0	- 0	ם מיני	U ==	- =	7. 9	17.8	17.8	17.7	17.7	17.7	17.7	17.7	17.6	7.5	17.4	17.4	4.7	17.4	٤ / ١	÷ r	 		+ / 1	17.6	17.7	17.5	1,' u	-! - -! -		17.4	
NY SEL	4		C1	œ.		+ 1	י כי	n <		י) ני	3 U	חר		J 6	10	. Œ	_	~	٥	1	l)	-	C1	י רנ	c (n .	0 [n c.	1 (, ,	רט	ŀ٦	Ξ	ויי	٠.	\ :		, –	۳.	-	L1	- 1	רט.		י כ	ם ה	1 .4	רט -	7.2	4 7	=	L/ :	.* . m e	: ::		
75E 2HJ	16.5	16.6	16.7	16.5	16.3	29.5		0 . 7 0 . 0	2 6	1 6	16.1	. c				. c.	16.2	16.3	16.2	16.3	16.6	16. 15.	16.4	16.3	9 .	7 E	0.01) v	4 4	5.2	1.91	16.1	15.9	 	5.9	0 · L	٠ م در در	. B.	15.6	15.5									15.7		12	ا ان ان	m ⊲	ተ «ተ ጋ ሆ	ינו רעוני	
EKS SLUSE HILD SHJ	3.9	B. 6	14.4	4.9	0.01 0.00	-20.6	ָ הַלָּה הַלְּהָ				. d	·	 		-7.9	٠ ا	-2.2	4.6	2.0	5.6	28.2	55.	G		9 0		- c	16.7	30.9		8.7	2.5	1.7	÷ (` r.	ا رت ب و	= 61 \ \ \	0	-11.8	-14.6	- 16.1		# 1 # 1	> C	0.01-		, C.	. 0 -	16.2	3.2 8	37.2	5 c	7 E		0 0.2	
HLOVNS		16.6	12.3	-9.7		, r. d.	7.71	0 0	-14.3	- 4 · B	0.0		-11.0	-7 B	(I)	. n	6.3	2.7	-3.8	7.3	28 3	17.8	, c	0.4	4 C	0.50	. O . O	40 6	31.4	16.7	7.1	9.2	ch i	 	ے نے آ			0.5	-13.3	-13.9	-12.8 5.4	9.9	e :	 	. t.) c	, c		15.7	45.1	33.0	13.4 13.4	- <u>4</u>	· •	25.3	
אם אר בבביים																																					5/2																597			